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ABSTRACT

Short interfering RNA (siRNA)-based RNA interfer-
ence (RNAi) is widely used for target gene
knockdown in mammalian cells. To clarify the
position-dependent functions of ribonucleotides in
siRNA, siRNAs with various DNA substitutions
were constructed. The following could be simulta-
neously replaced with DNA without substantial loss
of gene-silencing activity: the seed arm, which
occupies positions 2–8 from the 5’end of the
guide strand; its complementary sequence; the
5’end of the guide strand and the 3’overhang of
the passenger strand. However, most part of the 3’
two-thirds of the guide strand could not be replaced
with DNA, possibly due to binding of RNA-
recognition proteins such as TRBP2 and Ago2. The
passenger strand with DNA in the 3’end proximal
region was incapable of inducing off-target
effect. Owing to lesser stability of DNA–RNA hybrid
than RNA duplex, modified siRNAs with DNA sub-
stitution in the seed region were, in most cases,
incapable to exert unintended gene silencing due
to seed sequence homology. Thus, it may be
possible to design DNA–RNA chimeras which effec-
tively silence mammalian target genes without
silencing unintended genes.

INTRODUCTION

Several nucleic acid-based methods for knockdown of
target gene activity have become available over the last
several decades, and RNA interference (RNAi) is prob-
ably the most prominent. In mammals, short interfering
RNA (siRNA), 19-bp long double-stranded (ds) RNA
with 2-nt 30overhangs, is widely used for inducing RNAi
(1,2). In Drosophila cells, a heterodimer of Dicer2 and
R2D2 is considered to sense the differential stability of
siRNA duplex ends in determining the guide strand (3,4).
The Dicer2/R2D2 dimer in RLC [RNA-induced silencing
complex (RISC) loading complex] is gradually replaced by
Argonaute (Ago). Protein-complexed siRNA undergoes
unwinding. Recent studies on the structures of archea and
eubacteria Ago-like proteins (5–7) and the PAZ domain of
human Ago1 (8) have provided a great deal insight into
the molecular mechanism of RNAi in mammals and other
animals. The 50 and 30ends of the guide strand may be
anchored in pockets formed in the Mid and PAZ domains
of Ago, respectively (4,7,9). The 50-proximal ‘seed’
nucleotides (10), occupy position 2–8 measured from the
50end of the guide strand, and are present on the surface
of the Mid-PIWI lobe associated with a linker L1 in a
quasi-helical form in the RISC, may serve as the entry or
nucleation site for mRNA (7).

In active RISCs, target mRNA is cleaved by the RNase
H-like slicer activity of Ago (Ago2 in the case of
mammals) (11,12). Only siRNA with seed sequence
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homology to the target may serve as microRNA and
induce gene silencing via translational repression rather
than mRNA cleavage (13). In addition, recent microarray
profiling experiments revealed that unintended reduction
in expression of a large number of transcripts can also be
observed following the transfection of siRNA without
complete sequence complementarity to the transcripts,
reminiscent of microRNA-dependent reduction in gene
expression (10,14,15).

Certain ribonucleotides in siRNAs undergo substitution
with deoxyribonucleotide counterparts without substan-
tial loss of gene-silencing activity. The 30overhangs are
frequently replaced with deoxythymidine to prevent the
degradation of siRNA in cells (1,16,17). The passenger
strand of siRNA may be substituted totally with the DNA
counterpart (18). Chiu and Rana (19) introduced various
chemically modified nucleotides into siRNAs and found
that the 20OH of the guide strand near the mRNA
cleavage site may not be required for catalytic ribonu-
clease activity of RISC.

Here, we examined the effects of systematic deoxy-
ribonucleotide substitutions of highly functional siRNAs
(20) on gene silencing. The 50end and the 50proximal ‘seed’
arm of the guide strand were found capable of being
completely replaced with cognate deoxyribonucleotides
with little or no loss of gene-silencing activity. In contrast,
replacing the 30 proximal RNA sequence of the guide
strand with its DNA counterpart resulted in almost
complete loss of gene-silencing activity. Unlike the
nonmodified siRNAs, DNA-modified siRNAs, in which
the seed region is DNA and the remainder is RNA, could
hardly exert reduction of the activity of genes other than
the target gene (off-target effect) (21). These findings may
indicate most mammalian genes to be effectively knocked
down without substantial off-target effect by treating
cells with a class of DNA-modified siRNAs possessing a
DNA-seed-arm sequence.

MATERIALS AND METHODS

Cell culture and gene-silencing activity assay

Chinese hamster CHO-K1, human HeLa, mouse embryo-
nic stem (ES) cells (E14TG2a) and Drosophila S2 cells
were cultured and subjected to gene-silencing assay as
described previously (20). Briefly, 1-ml cell suspensions of
CHO-K1 (1� 105 cells/ml), HeLa (1� 105 cells/ml),
E14TG2a (2� 105 cells/ml) and S2 (1� 106 cells/ml)
were inoculated in a 1.5-cm well 24 h prior to transfection.
Cells were transfected with pGL3-Control (1 mg, Promega)
or pGL2-Control (1 mg; Promega), both coding for firefly
luciferase (luc) gene, and Renilla-luc-gene encoding pRL-
SV40 (0.1 mg, Promega) with or without siRNA or the
corresponding DNA-modified siRNA. Cells were har-
vested 24 h after transfection and luc activity was
measured using the Dual-Luciferase Reporter Assay
System (Promega). RNA, DNA and DNA-modified
siRNAs, of which the nucleotide sequences used in this
study are listed in Supplementary Table S1, were
chemically synthesized (Proligo). Fifty percent inhibitory

concentrations (IC50s) of siRNAs and DNA-modified
siRNAs were estimated using the Pharmacologic
Calculation Program (22).

RT–PCR

Using Lipofectamine 2000 (Invitrogen), E14TG2a or
HeLa cells were cotransfected with 50 nM siRNA or
DNA-modified siRNA, and pCAGIPuro-EGFP (0.5mg/ml;
20), which encodes EGFP and puromycin-resistant genes.
Puromycin (2 mg/ml; Clontech) was added to the medium
24 h after transfection. RNA was extracted 3 days after
transfection using RNeasy (QIAGEN). Possible change in
relative fraction of target RNA was examined by
RT–PCR using the RNA LA-PCR kit (Takara) and
mGapdh mRNA as an internal control. Primers used are
listed in Supplementary Table S2.

Electrophoresis mobility shift analysis

Regions encoding a full-length human PACT (23) and
human immunodeficiency virus trans-activating response
RNA-binding protein 2 (TRBP2) (24) were amplified from
a cDNA mixture of a total RNA extracted from HeLa
cells by PCR. Used primers are as follows: PACT (50-
TTTTTTTTTTCATATGTCCCAGAGCAGGCACCGC
GAGGCC and 50-TTTTTTTTGCGGCCGCTTACTTT
CTTTCTGCTATTATCTTTAAATA) and TRBP2 (50-T
TTTTTTTTTCATATGCTGGCCGCCAACCCAGGCA
AGA and 50-TTTTCCTTTTGCGGCCGCTCACTTGC
TGCCTGCCATGATCTTGAGGTA). The amplified
fragments were digested with NdeI and NotI and cloned
into pET-28a (Novagen). PACT and TRBP2 proteins
were produced in Escherichia coli BL21 codon plus and
Rosetta (DE3) pLysS, respectively, as amino-terminal
hexa-histidine-fusion proteins, and purified with NTA
agarose. Binding to siRNA or its DNA counterparts
(siDNA) (5 fmol/ml) was carried out in 25mM Tris–HCl
(pH8.0), 150mM NaCl, 125mM imidazole, 13% glycerol,
50 ng/ml salmon sperm DNA and 2 U/ml RNasein for
30min at room temperature. The mobility shift assay was
conducted on a 5% polyacrylamide gel and analyzed
quantitatively using FLA-2000 image analyzer (Fujifilm).

Target cleavage assay

Luc2-153, the target sequence for the firefly luc siRNA,
siLuc2-153, was inserted into the EcoRI/XhoI site of
pTREC (25) to generate pTREC-2-153. The construct
(0.5 mg) was introduced by transfection into HeLa cells
with or without cognate siRNA or DNA-modified siRNA
and cells were recovered 24 h after transfection. Total
RNA was prepared using QuickPrep Micro mRNA
Purification Kit (Amersham). Primer extension was
carried out using 32P-labeled primer (50-CTCGAAGCA
TTAACCCTCACT-30) and the Primer Extension System-
AMV Reverse Transcription Kit (Promega). Reaction
products were size-fractionated by electrophoresis on 6%
polyacrylamide gel containing 7-M urea in TBE buffer.
Cleavage sites were determined using parallel sequence gel.
DNA sequence analysis was carried out by using Thermo
Sequence Fluorescent Labeled Primer Cycle Sequencing
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Kit (Amersham) but fluorescent-labeled dideoxyribo-
nucleotides were replaced with 32P-labeled dideoxy-
ribonucleotides.

Construction of psiCHECK derivatives and the assay
of seed-sequence- and passenger-strand-based
off-target activity

The plasmids psiCHECK-sm-X1, X2 and X3, respec-
tively, included one, two and three copies of seed-matched
(sm) target sequences while psiCHECK-cm-X1-X3,
included one to three copies of completely matched (cm)
target sequences (see Figure 4, Supplementary Figures S6,
S8 and S9). They were constructed as follows. Chemically
synthesized oligodeoxynucleotides (29–75 bp) including
one to three copies of the same 23-bp sm or cm target
sequences with cohesive XhoI/EcoRI ends were inserted
into the psiCHECK-1 (Promega) XhoI/EcoRI site, which
is situated in the region encoding the 30UTR of Renilla
luciferase mRNA. Human vimentin and mouse Oct4
sequences were used as targets (Supplementary Table S3).
The cm sequence is completely matched that of the guide
strand of nonmodified or DNA-modified siRNAs, and is
expressed as a part of the target mRNA in transfected cells
(see Figure 4). In contrast, the sm sequence in the target
mRNA consists of two parts. Its 30-terminal one-third is
complementary in sequence to the 8-bp long 50proximal
region of the guide strand of siRNA or DNA-modified
siRNA, while the remaining two-thirds, totally nonhomo-
logous (see Figure 4). To construct psiCHECK-sm-X6,
which includes six copies of Oct-797 and Luc-36 target
sequences (see Supplementary Figure S9), 144-bp of ds
insert DNA was synthesized by enzymatic ligation of 71-
and 73-bp long chemically synthesized dsDNA fragments
with 4-nt long 50protrusions, and inserted into the XhoI/
EcoRI site of psiCHECK-1. psiCHECK-GS and
psiCHECK-PS, respectively, were constructed by inserting
a PCR-amplified fragment containing target region
(nucleotide position 97–856) of HPV16 E6E7 (accession
number K02718) into the NotI site of psiCHECK-1 (see
Figure 3). Used primers are as follows: 50-GCGGCCGC
AACTGCAATGTTTCAGGACC and 50-GCGGCCGC
TTATGGTTTCTGAGAACAGA. As GS/PS inserts,
HPV-16 sequences along with three copies of 23-bp long
target sequence of VIM-270 and Oct-797 (Supplementary
Table S3) were used. The orientation of the insert was
determined by nucleotide sequence analysis and plasmids
with different insert orientations were selected. Plasmids
expressing the GS and PS targets, respectively, used as
psiCHECK-GS and psiCHECK-PS. HeLa cells in a well
of 24-well culture plate were transfected simultaneously
with one of psiCHECK derivatives (0.1 mg each) and
pGL3-Control (Promega, 1 mg), phLuc-Control (see
below, 1 mg) and siRNA or DNA-modified siRNA. Cells
were harvested 24 h after transfection and luc activity was
measured using the Dual-Luciferase Reporter Assay
System (Promega). For assay using HVP16 target
sequences, HeLa cells in a well of 96-well culture
plate were transfected with a psiCHECK derivative
(1.6 ng), pZeoSV2-hLuc (0.4 ng) and nonmodified
or DNA-modified siRNAs and analyzed 48 h after

transfection. pGL3-Control, encoding the firefly luc,
served as a control for Renilla luc silencing assay for the
siRNAs (siVIM-270, -596, -812 and -1128, siOct-797, and
-821, siGRK4-934) along with cognate DNA-modified
siRNAs (chiVIM-270, -596, -812 and -1128, chiOct-797,
and -821, chiGRK4-934). The gene-silencing assay for
siRNAs (siLuc-36, -49, -309, -774 and 2-153) and cognate
DNA-modified siRNAs (chiLuc-36, -49, -309, -774 and 2-
153) was carried out using as a control phLuc-Control
coding for a modified firefly luciferase gene. The assay for
five siRNAs (siHPV16-497, 573, -698, -707 and -752) and
cognate DNA-modified siRNAs (chiHPV16-497, 573,
-698, -707 and -752) was carried out using pZeoSV2-
hLuc. phLuc-Control is a derivative of pGL3-Control
(Promega) in which the 1.7-kb XbaI/HindIII region
encoding firefly luc is replaced with the XbaI/HindIII
hLuc fragment of psiCHECK-2 (Promega). pZeoSV2-
hLuc is constructed by introducing hLuc fragment into
pZeoSV2 (Invitrogen). The siGCY416 is an siRNA for
knockdown of GFP and serves as an siRNA control. The
nucleotide sequences for the target described above are
shown in Supplementary Table S3.

Calculation of melting temperature

Melting temperature (Tm) was calculated based on the
nearest-neighbor model (26) and the thermodynamic
values for RNA–RNA (27) and RNA–DNA (28).
Oligonucleotide and sodium chloride concentrations
were assumed to be 100 nM and 100mM, respectively.

Microarray analysis

HeLa cells (1� 105 cells/ml) were inoculated in a 1.5-cm
well 24 h prior to transfection. Cells were transfected with
50 nM siVIM-270 or chiVIM-270. Total RNA (3 mg)
purified using RNeasy Kit (Qiagen) 1 day after transfec-
tion was used for hybridization to Human Genome U133
Plus 2.0 GeneChip (Affymetrix) containing �47 400
human transcripts according to the manufacturer’s pro-
tocol. RNA from mock-transfected cells, which were
treated with transfection reagent in the absence of
nonmodified or DNA-modified siRNAs, was used as a
control. To calculate transcript expression values,
Microarray Suite 5.0 (MAS5, ref. 29) was used with
quantile normalization (30), and transcritps with sufficient
hybridization signals to be called present (P) were used in
this study. To identify transcripts that were downregu-
lated on the array, we compared the cumulative distribu-
tion of expression changes for messages with the site
versus those with no canonical site, and calculated the
maximum positive cumulative difference between the two
distributions. The statistical significance of their dissim-
ilarity was quantified using the Wilcoxon’s rank-sum test
(31,32) as P-value.

Motif analysis of 3’UTR

The probe sequences were taken from the latest
annotation table provided on the Affymetrix Web site
(http://www.affymetrix.com). We mapped them to the
RefSeq human mRNA sequences (release 24), and then
identified the target transcripts. We found 67 220
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annotations of the human transcripts, which corresponded
to 54 675 of the probesets. Among these, 19 856 transcripts
called P by MAS5, of which 16 783 RefSeq entries (25%)
with the 30UTR were considered in this study. sm
sequences at positions 2–8, 1–7 and 1–8 from the 50 end
of the guide strand were assigned to the extracted 30UTR
sequences.

Quantitative RT–PCR

Quantitative RT–PCR was carried out using total RNA
purified, whose properties were also analyzed using the
microarray. RNA was reverse-transcribed using the
SuperScript First-Strand Synthesis System for RT–PCR
(Invitrogen). The resultant cDNA and SYBR Green PCR
Master Mix (Applied Biosystems) were mixed and
incubated at 958C for 10min before the PCR reaction.
The levels of PCR products were monitored with ABI
PRISM 7000 sequence detection system and analyzed with
ABI PRISM 7000 SDS software (Applied Biosystems).
Each reaction was run in triplicate. The expression level of
each sample was first normalized to the amount of b-actin
and then to the mock-transfection control. The used
primer sets are listed in Supplementary Table S4.

RESULTS

Asymmetric requirement of ribonucleotides
in siRNA for effective gene silencing

In the present article, the ends of siRNA possessing the
50ends of the guide and passenger strands, respectively, are
referred to as GS and PS ends (Figure 1A). To examine
the effects of DNA replacement on gene silencing system-
atically, six different types of partially DNA-substituted
siRNAs, whose structures are illustrated in Figure 1A,
were constructed based on the sequences of siLuc-36
(Figure 1) and siLuc2-153 (Supplementary Figure S1).
These siRNAs have been shown to be highly functional in
firefly luc-gene silencing (20). In three left DNA-modified
siRNAs in Figure 1A, ribonucleotides were progressively
replaced with cognate deoxyribonucleotides from the PS
end, while, in three right ones, deoxyribonucleotide
substitutions occurred progressively from the GS end.
In replacement with dsDNA, paired ribonucleotides were
simultaneously replaced with cognate deoxyribonu-
cleotides. In siRNAs with DNA replacement only in the
guide and passenger strand, respectively, guide and
passenger strands are DNA–RNA chimeras, with the
remaining being RNA. Using these different types of
DNA-modified siRNAs, examination was made of possi-
ble firefly luc gene activity reduction in three mammalian
cells, CHO-K1, HeLa and E14TG2a and Drosophila S2
cells (Figure 1B–G and Supplementary Figure S1A–F).

DNA replacement of the two siRNA sequences gave
results nearly the same with each other in all three
mammalian cells. In the case of dsDNA replacement from
the PS end, all modified siRNAs except those containing
DNA replacement only in the vicinity of the PS end had
little, if any, gene-silencing effect on luc target (Figure1B,
Supplementary Figure S1A). In contrast, as with non-
modified siRNAs, nearly all luc gene activity was

abolished subsequent to transfection with modified
siRNAs with dsDNA substitution �10 bp (Figure 1C) or
8 bp (Figure S1B) in length from the 50 end of the guide
strand. Furthermore, in mammalian cells, gene-silencing
effects due to transfection with modified siRNAs with
dsDNA substitution from the GS end were noted strongly
correlated with those induced by that with modified
siRNAs with DNA substitution only in the guide strand
(Figure 1B–E, Supplementary Figures S1A–D and S2A).
In contrast, transfection with modified siRNAs with DNA
substitution only in the passenger strand gave a small, if
any, effect on luc target gene silencing in mammalian cells
(Figure 1F and G, and Supplementary Figures S1E and F
and S2B). Mammalian gene silencing due to treatment
with siRNAs with dsDNA substitution may thus be
concluded due primarily to interactions between the guide
strand and target mRNA and/or those between the guide
strand and protein moieties involved in gene silencing. The
contribution of the passenger strand to gene silencing is
much greater in Drosophila than mammalian cells, since
considerable reduction of luc gene activity was evident in
S2 cells transfected with modified siRNAs with DNA
substitution only in the passenger strand (Figure 1F and
G, and Supplementary Figure S1E and F).
As described below, ribonucleotide residues in the PS-

end proximal region are essential to RLC- and/or RISC-
protein binding. The 8-bp long GS-end proximal region,
which can be replaced with the DNA counterpart without
substantial loss of gene-silencing activity, includes the seed
region situated from nucleotide position 2 to 8, measured
from the 50end of the guide strand.
DNA-replacement/gene-silencing profiles of the siLuc2-

153 sequence were unexpectedly found to shift a few bases
to the side of the 50 end of the guide strand from those
of siLuc-36 sequence (Supplementary Figure S3). The
apparent profile shift in the vicinity of the PS end may
be due in part to different sequence-dependent effects of
deoxyribonucleotide replacement in the 30overhang.
The presence or the absence of 50terminal phosphate

gave no significant difference on gene silencing
(Supplementary Figure S4), suggesting that, as with
nonmodified siRNA (33), the 50end of DNA-modified
siRNA is phosphorylated within cells. Interferon response
due to DNA-modified siRNA was not more profound
than that due to nonmodified siRNA (Supplementary
Figure S5).

ES-to-differentiated cell fate transition induced
by functional DNA-modified siRNA-dependent
inactivation of Oct4

Oct4 is a gene-encoding POU transcription factor that
regulates ES cell pluripotency (34). A reduction in Oct4
expression leads to the loss of pluripotency and differ-
entiates ES cells into trophectoderms, which are char-
acterized by flat morphology (34). Indeed, both
morphological changes and reduction in Oct4 expression
were observed in mouse ES cells transfected with siOct-
797, an siRNA specific to Oct4 (Figure 2A1 and 2; B1
and 2). As shown in Figure 2A4 and B4, chiOct-797-GS,
a DNA-modified siRNA version of siOct-797, of which

Nucleic Acids Research, 2008, Vol. 36, No. 7 2139

 at E
kigaku-K

yoshitsu (U
N

IV
 O

F
 T

O
K

Y
O

) on O
ctober 17, 2010

nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


R
el

at
iv

e 
lu

c 
ac

tiv
ity

(%
)

R
el

at
iv

e 
lu

c 
ac

tiv
ity

(%
)

R
el

at
iv

e 
lu

c 
ac

tiv
ity

(%
)

R
elative luc activity(%

)
R

elative luc activity(%
)

R
elative luc activity(%

)

S2 CHO-K1 HeLa E14TG2a

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 23 1 −1 −2

5′-C A U U C U A U C C G C U G G A A G A U G -3′
3′-C G G U A A G A U A G G C G A C C U U C U-5′

siLuc-36

nucleotide position
passenger strand

guide strand

PS end
↓

GS end
↓

5′
5′
3′

3′

dsDNA

5′
5′
3′

3′

dsDNA

5′
5′
3′

3′

guide strand DNA

5′
5′
3′

3′

guide strand DNA

5′
5′
3′

3′

passenger strand DNA

5′
5′
3′

3′

passenger strand DNA

B C

ED

F G

Position of DNA/RNA boundary from 5′ end of guide strand

dsDNA replacement

Guide-strand-specific DNA replacement

Passenger-strand-specific DNA replacement

PS end GS endA

5′
5′

3′
3′

5′
5′

3′
3′

5′
5′

3′
3′

5′
5′

3′
3′

5′
5′

3′
3′

5′
5′

3′
3′

passenger strand
guide strand

guide strand

passenger strand

Figure 1. Effects of the size and position of deoxyribonucleotide substitutions on gene silencing. (A) siRNAs with various DNA substitutions were
constructed based on the siLuc-36 sequence, which is shown in the lower margin with nucleotide position measured from the 50 end of the guide
strand, and were subjected to the luc gene assay. Six different types of DNA-modified siRNAs are schematically shown. In three left constructs, RNA
sequences were progressively replaced with DNA counterparts from the PS end, which includes 50 and 30 ends of passenger and guide strands,
respectively. In three right constructs, RNA was replaced with DNA from the GS end, including the 5 0end of the guide strand and 30 end of the
passenger strand. Both left and right constructs include three types of DNA replacement, that is, double-strand replacement, and guide and
passenger-specific replacement. DNA and RNA portions are colored in blue and orange, respectively, and arrows indicate the direction of DNA
replacement. (B–G) Ribonucleotides of double (B, C), guide (D, E) and passenger (F, G) strands were progressively replaced with
deoxyribonucleotide counterparts from the PS end (B, D, F) or the GS end (C, E, G). Numerals from -2 to 21, which are situated below each
graph indicate nucleotide position from the 50 end (position 1) of the guide strand. (–1, –2) and (20, 21), respectively, correspond to 30 overhangs at
the GS and PS ends. Relative luc activity at position ‘x’ indicates the activity due to authentic siRNA (siLuc-36). S2, CHO-K1, HeLa and E14TG2a
cells were transfected with pGL3-Control DNA (1 mg) and pRL-SV40 DNA (0.1 mg) with or without authentic siRNA or the corresponding modified
siRNAs with various DNA substitution (50 nM each). Relative luc activity was measured 24 h after transfection. Note that modified siRNA with
10-bp or <10-bp long single or double-stranded DNA substitution from the GS end was capable of inactivating the target luc gene as effectively
as authentic siRNA.
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the 8-bp long GS-end-proximal region is occupied by
DNA, also induced a very similar morphological change
and a significant reduction in Oct4 expression. Reduction
in Oct4 activity is also known to induce the expression of
heart- and neural crest derivatives-expressed protein 1
(Hand1), placenta-specific homeobox 1 (Psx1) and caudal
type homeobox 2 (Cdx2) genes and represses Fgf5
expression (34,35). Figure 2B shows that, as with siOct-
797, chiOct-797-GS induced Hand1, Psx1 and Cdx2
expression and repressed Fgf5 expression as well. In
contrast, changes in neither morphological nor gene
expression were observed in ES cells transfected with
chiOct-797-PS possessing DNA substitution in the PS-end
proximal third (Figure 2A3 and B3).
Taken together, results described above may indicate

8-bp long dsRNA from the 50guide strand end of
functional siRNAs to be replaceable with DNA counter-
parts without substantial loss of gene silencing activity.
siRNAs in which all ribonucleotides in the 8-bp long ds

region from the GS end and those in the 30overhang of the
passenger strand are replaced with cognate deoxyribonu-
cleotides (Figure 2C) are referred to as modified siRNAs
with 8-bp GS-DNA substitution from here on and
vice versa.

Requirement of 7-bp long GS-end proximal AT-rich DNA
sequence for effective gene silencing due to transfection with
modified siRNA with 8-bp GS-DNA substitution

In a previous work (20), we classified siRNAs into three
groups, class-I, -II and -III and showed class-I siRNAs to
be highly functional. Class-I siRNAs satisfy the three
following sequence-conditions simultaneously: A/U at the
50 terminus of the guide strand; G/C at the 50 terminus of
the passenger strand; at least four A/U residues in the 50

terminal 7 bp of the guide strand. siRNAs opposite in
these features give rise to little or no gene silencing in
mammalian cells, and are grouped as class-III. In
addition, more than 9-bp long G/C stretch is absent
from class-I siRNAs. siRNAs other than class-I and III
are defined as class-II. This guideline for highly effective or
functional siRNAs has been used widely along with those
proposed by other investigators (36,37). Modified siRNAs
with DNA substitution described above were all designed
based on sequences of siRNAs belonging to class-I.
To further examine whether modified siRNAs with 8-bp

or less than 8-bp GS-DNA substitution are capable of
inducing effective target gene silencing provided that
their nonmodified siRNA counterparts belong to class-I,

B
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(inactive)

modified siRNA with 8bp-
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(active)
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1 2
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Figure 2. Functional assay of modified siRNAs with DNA substitution
in mouse E14TG2a cells. The siOct-797 is a highly effective class-I
siRNA for Oct4 gene silencing (20). siLuc-12 is an siRNA for
knockdown of unrelated luc gene and serves as a control. chiOct-797-
PS is a DNA-modified siOct-797, of which the 11-bp long PS-end-
proximal region is DNA, while chiOct-797-GS is a DNA-modified
siOct-797, of which the 8-bp long GS-end-proximal region is DNA.
DNA and RNA are colored in blue and orange, respectively, while the
7-bp long AU- or AT-rich region is indicated by the red horizontal bar.
Arrows indicate the guide strands. (A) Morphological change induced
by transfection of nonmodified and cognate DNA-modified siRNAs.
The structures of nonmodified siRNA or two types of DNA-modified
siRNAs are schematically shown in the lower margin of each panel.
E14TG2a cells were simultaneously transfected with pCAGIPuro-
EGFP (0.5 mg/ml), encoding Enhanced Green Fluorescent Protein
(EGFP) and puromycin-resistant genes, and siLuc-12 (negative
control), siOct-797 (positive control), chiOct-797-PS or chiOct-797-
GS, 50 nM each. Puromycin (2mg/ml) was added to the medium 24 h
after transfection, and possible morphological change was observed
under a phase contrast microscope 3 days after transfection. As with
the nonmodified functional siRNA (siOct-797), chiOct-797-GS but not
chiOct-797-PS induced flat morphology, typical of trophectoderm
(34,35). (B) Expression of trophectoderm differentiation marker genes.
The mGapdh was used as an internal control. Results of
unrelated siLuc-12 transfection is shown in lane 1. As with the
nonmodified effective siRNA (siOct-797; lane 2), chiOct-797-GS

(lane 4) induced Hand1, Psx1 and Cdx1 expression and repressed
Oct4 and Fgf5 expression, indicating that chiOct-797-GS is capable of
effectively inactivating Oct4. In contrast, no appreciable gene expres-
sion change was induced by chiOct-797-PS (lane 3), indicating
chiOct797-PS is an inactive modified siRNA. (C) Structures of
functional DNA-modified siRNA. Highly effective siRNAs (class-I
siRNAs) can be converted into either active or inactive DNA-modified
siRNAs depending on whether DNA arms are situated in the PS or GS
terminal halves. Modified siRNA associated with an 8-bp long DNA in
the GS-end-proximal region is as active as the parental authentic
siRNA. In contrast, modified siRNA with DNA substitution in the
PS-end proximal region is inactive.
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gene-silencing activities of 16 modified siRNAs with 6- or
8-bp GS-DNA substitution were compared with those of
cognate authentic siRNAs. Results at 16 target sites are
shown in the lower graphs of Figures 3 and 4. Not only all
16 nonmodified siRNAs but also16 DNA-modified
siRNAs caused more than 70% of reduction in target
gene activity at siRNA concentration of 50 nM.
Target-gene knockdown effect varied depending on

siRNA concentration (Supplementary Figure S6). DNA-
modified siRNAs exhibited gene-silencing activity vir-
tually similar to that due to the nonmodified cognate
siRNAs when the siRNA concentration was 0.5–50 nM
(Figures 3 and 4, Supplementary Figure S6), although, at
0.05 nM, gene silencing induced by DNA-modified siRNA
was less profound than that induced by nonmodified
siRNA counterparts possibly due to weaker seed activity
of the DNA seed arm (see below). Calculated IC50 values
of the nonmodified siRNAs varied from 1 to 318 pM
depending on sequences, while those of DNA-modified
siRNA counterparts were from 47 to 5463 pM (Table 1;
fold IC50 changes, 1–35).
It may thus follow that modified siRNAs with 8-bp or

<8-bp GS-DNA substitution are capable of inducing
effective gene silencing if the concentration is properly
chosen and their nonmodified siRNA counterparts belong
to class-I.

Involvement of Ago2, TRBP2, PACT and sequence-specific
mRNA cleavage in gene silencing due to transfection
with modified siRNAs with 8-bp GS-DNA substitution
in mammalian cells

TRBP2 (24) and PACT (22) are putative mammalian
counterparts of Drosophila RLC protein, R2D2, which
senses the differential stability of siRNA duplex ends to
determine which strand will be loaded into RISC as the
guide strand (3). R2D2 appears to bind more stable RNA
end (3). TRBP2, PACT and R2D2 contain dsRNA-
binding domains (23,24,38) and, as shown in Figure 5A,
are capable of binding to dsRNA but not dsDNA (39,40),
suggesting that, in the case of modified siRNAs with 8-bp
GS-DNA substitution, these RLC proteins bind only to
certain ribonucleotides present in PS terminal two-thirds.
Ago2 is a key RNA-binding protein for nonmodified
siRNA-based RNAi in mammals (41,42).

We demonstrate that these proteins are essential to
functional mammalian gene silencing due to transfection
with modified siRNAs with 8-bp GS-DNA substitution in
HeLa cells. The activity of TRBP2 and Ago2 were reduced
significantly through RNAi with TRBP2 and Ago2-secific
siRNAs, respectively (Figure 5B). As shown in Figure 5C,
Ago2 and TRBP2 siRNA treatment of HeLa cells not
only specifically reduced Ago2 and TRBP2 expression but
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Figure 3. The absence of passenger-strand-dependent off-target effects from gene silencing due to transfection with modified siRNA with GS-DNA
substitution. The action of authentic and modified siRNAs to the guide strand targets (GS targets, lower graph) and passenger strand targets (PS
target, upper graph) were examined using five HPV16, one human vimentin and one mouse Oct4 sites. Modified siRNAs with 6-bp GS-DNA
substitution were used for five HPV16 targets, while those with 8-bp GS-DNA substitution, for vimentin (VIM) and Oct4 (Oct) targets.
(A) Structures of psiCHECK-PS and GS along with PS and GS target recognition mechanisms by modified siRNA with 8-bp GS-DNA substitution
are schematically shown. DNA sequence in DNA-modified siRNA is colored in blue. The passenger strand (PS) is completely complementary to the
PS target sequence situated in the 30UTR of luc mRNA transcribed from psiCHECK-PS. The guide strand (GS) completely matches the GS target
sequence in luc mRNA transcribed from psiCHECK-GS. (B) HeLa cells were transfected with psiCHECK-PS or -GS and plasmids for luc activity
control as shown in ‘Materials and methods’ section. The lower graph shows silencing effects on GS-targets, while the upper graph, those on
PS-targets. Results shown in the lower graph indicate that not only all authentic siRNAs but also all seven modified siRNAs with GS-DNA
substitution are highly active in silencing GS-targets, indicating that the guide strand (GS) in which a 6- or 8-bp region from the 50 end is DNA is as
active as that of cognate authentic siRNA. In contrast, virtually no reduction in PS-target expression can be seen in the case of transfection with
modified siRNAs with GS-DNA substitution, while occasional reduction in PS target expression occurred in the case of non-modified siRNA
treatment, indicating that, unlike nonmodified-siRNA-based RNAi, gene silencing due to transfection of modified siRNAs with GS-DNA
substitution is associated with no or little PS-dependent off-target effect.
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also prevented siLuc-36 or siLuc-774-based luc gene
silencing. By comparison with control siRNA treatment
(treatment with siGY441, a siRNA specific for GFP),
Ago2 or TRBP2 siRNA treatment was found to increase
relative luc activity by 30–50 points in DNA-modified
siRNA-dependent gene silencing as in the case
of nonmodified-siRNA-dependent RNAi (Figure 5C).
A separate experiment showed PACT siRNA treatment
prevented DNA-modified-siRNA-based gene silencing to
some extent (Supplementary Figure S7). Ago2, PACT and
TRBP2 may thus be involved in gene silencing due to

modified siRNA with 8-bp GS-DNA substitution as in the
case of RNAi with nonmodified siRNAs. However, note
that siGY441, a control siRNA, much more strongly
prevented DNA-modified-siRNA-dependent gene silen-
cing than RNAi, indicating that certain critical RISC and/
or RLC proteins may have less affinity toward modified
siRNAs with 8-bp GS DNA substitution than toward
nonmodified siRNAs.
In RNAi, target mRNA is cleaved at the point

corresponding to the center of the guide strand via
RNase H-like activity of the PIWI domain of Ago2
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Figure 4. Comparison of seed-sequence-dependent off-target effects due to RNA and DNA seed arms. Off-target effects of 12 sets of functional
siRNA and cognate modified siRNA with 8-bp GS-DNA substitution were examined using psiCHECK-sm and -cm plasmids with various sm and
cm targets and the dual luciferase assay. (A) Structures of psiCHECK-sm and -cm plasmids and modified-siRNA-dependent mechanisms of sm and
cm target recognition are schematically shown. Three thick green and orange arrows, respectively, indicate sm and cm target sequences inserted.
Black thick horizontal bar, seed arm sequence (position 2–8) of the guide strand. DNA sequence in modified siRNA is colored in blue. Only the seed-
sequence-including DNA portion of the guide strand possesses a complete complementarity to the sm target sequence which is situated in the 30UTR
of luc mRNA transcribed from psiCHECK-sm. The entire guide strand completely matches the cm sequence in luc mRNA transcribed from
psiCHECK-cm. Luc, VIM and Oct, respectively, indicate to contain sequences related to firefly luc, human vimentin and mouse Oct4. (B) HeLa cells
were transfected with psiCHECK-1 containing three repeats of sm or cm target sequences (0.1 mg) and either phLuc-Control or pGL3-Control (1 mg)
was used as a control. Cells were simultaneously transfected with either nonmodified or DNA-modified siRNA at 50 n M. The lower graph shows
silencing effects on cm targets, while the upper graph, those on sm targets. Results shown in the lower graph indicate that not only all nonmodified
siRNAs but also modified siRNAs with 8-bp GS-DNA substitution are highly active in silencing cm target sequences, indicating that the guide strand
in which an 8-bp region from the 50 end is DNA is as active in gene silencing as that of cognate authentic siRNA. The upper graph shows that
virtually no reduction in sm target expression can be seen in the case of transfection with modified siRNAs with 8-bp GS-DNA substitution. In
contrast, occasional reduction in sm target expression occurred in the case of authentic siRNA treatment. These findings may indicate that gene
silencing due to transfection of modified siRNAs with 8-bp GS-DNA substitution is associated less frequently, if any, with seed-sequence-dependent
off-target effect than classical RNAi.

Table 1. IC50s of non-modified and DNA-modified siRNAs

Luc-309 VIM-812 GRK4-934 Oct-821 Luc-774 VIM-1128 Luc2-153 VIM-596 Oct-797 VIM-270 Luc-36 Luc-49

Non-modified siRNA
(pM) 7 25 34 318 13 9 18 17 1 156 167 5

DNA-modified siRNA
(pM) 48 146 744 247 85 75 179 131 47 5463 270 16

IC50 fold change
(DNA-modified
siRNA/non-modified
siRNA) 7.0 5.8 21.9 0.8 6.4 8.0 10.2 7.9 33.3 35.0 1.6 3.2
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(11,12,16,43). Real-time PCR experiments indicated
that the mRNA target is effectively degraded through
DNA-modified siRNA treatment (data not shown).
Examination was thus made to determine at what point
target mRNA is cleaved in DNA-modified-siRNA-depen-
dent gene silencing using chiLuc2-153, a modified siRNA
of siLuc2-153 with 8-bp GS-DNA substitution
(Figure 5D). The position of the main cleavage site was

found to be precisely the same to that of RNAi. In both
cases, the main cleavage point was situated between
position 10 and 11, as measured from the 50end of the
guide strand. A similar coincidence of target cleavage site
was also found when siLuc-36 sequence was examined
(data not shown).

These results presented so far may indicate that, as with
functional siRNA, functional modified siRNA with 8-bp
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Figure 5. Involvement of Ago2, TRBP2 and PACT in modified-siRNA-dependent gene silencing. (A) PACT and TRBP2 binding to siRNA (siLuc-
36) and cognate siDNA. The 50end of the guide strand of siRNA or siDNA was phosphorylated with [g-32P] ATP and the 50end of the passenger
strand was phosphorylated with cold ATP. A mobility shift assay was carried out using PACT and TRBP2 proteins purified from E. coli cells. Note
that TRBP2 and PACT are capable of binding to dsRNA but not dsDNA. Arrows indicate the position of protein–nucleic acid complexes.
(B) Reduced expression of Ago2 and TRBP2 by RNAi. HeLa cells were transfected with siGY441 (control siRNA), siAgo2 or siTRBP2 (50 nM)
along with pCAGIPuro-EGFP (0.5 mg) and subjected to RT–PCR 3 days after transfection. Note that Ago2 and TRBP2 RNA were specifically
knocked down by siAgo2 and siTRBP2, respectively. (C) Requirement of Ago2 and TRBP2 for gene silencing due to transfection with modified
siRNA with 8-bp GS-DNA substitution. HeLa cells were simultaneously transfected with pGL3-Control DNA (1 mg) and pRL-SV40 DNA (0.1mg),
and a mixture of siRNA and modified siRNA with DNA substitution. Two siRNAs, siLuc-36 (left panel) and siLuc-774 (right panel), and their
modified siRNA counterparts, 5 nM each, were used for luc gene silencing. chiLuc-36 and chiLuc-774-GS are functional DNA-modified siRNAs
specific to luc knockdown, whereas chiLuc-774-PS is a modified siRNA with DNA replacement in the PS-end-proximal region. Ago2 and TRBP2
were knocked down using 50 nM siAgo2 and siTRBP2, respectively. As an siRNA concentration control, siGY441 (50 nM), an siRNA for EGFP
knockdown, was used. Gene-silencing activity was measured 24 h after transfection. Note both nonmodified and DNA-modified siRNA-dependent
luc gene-silencing activity to be reduced by 30–50 points by knocking down Ago2 and TRBP2 activity through siAgo2 and siTRBP2 RNAi,
respectively. (D) Functional DNA-modified siRNA-dependent target mRNA cleavage. HeLa cells were cotransfected with pTREC-2-153 and siLuc-
1085 (a negative control siRNA), siLuc2-153 (target-cleavable siRNA) or its cognate modified siRNA with 8-bp GS-DNA substitution, each 5 nM.
RNA was extracted 24 h after transfection, and cleavage sites were determined by primer extension. Sequence ladder was prepared using the same
pTREC construct (25). Note that the position of the main cleavage site is precisely identical between RNAi and gene silencing due to transfection
with modified siRNA with 8-bp GS-DNA substitution.
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GS-DNA substitution is loaded into Ago2-including
RISC and that the guide strand in its DNA portion
serves as guide for target mRNA nucleation and
subsequent cleavage. As in the case of nonmodified-
siRNA-based RNAi, TRBP2 and PACT are likely to be
involved in the formation of RLC including modified
siRNA with 8-bp GS-DNA substitution in mammalian
cells.

Absence of gene-silencing activity from the passenger
strand with DNA substitution in the 3’terminal region

In nonmodified-siRNA-based gene silencing, it may be
difficult to evade the possible passenger-strand-dependent
silencing of unintended genes (44). As described above (see
e.g. Figure 1), if the 30terminal region of the guide strand
of siLuc-36 or siLuc2-153 is substituted with DNA, no or
little target gene silencing occurred. The 30terminal region
of the passenger strand of modified siRNA with GS-DNA
substitution is always occupied by DNA (see Figure 2C),
suggesting that gene silencing due to transfection with
functional modified siRNA with GS-DNA substitution is
not associated with any activity of inducing passenger-
strand-dependent off-target effect.

To further confirm this point, one copy of cm target
sequence for guide or passenger strands (GS or PS targets,
respectively) were introduced into the 30UTR of
psiCHECK-1 to generate psiCHECK-GS and -PS plas-
mids, and nonmodified and DNA-modified siRNA-
dependent reporter gene silencing effects were examined.
All siRNAs used here belong to highly functional class-I.
As described above and can be seen in the lower graph of
Figure 3B, all 7 DNA-modified siRNAs used here appear
to possess a highly functional guide-strand activity. The
upper graph of Figure 3B showed that target gene
silencing subsequent to transfection with at least four of
seven nonmodified siRNAs is associated with apparent
passenger-strand-dependent off-target activity. Note that,
in all four cases, more than 80% reduction in PS target
activity was evident. In contrast, none of seven modified
siRNAs with GS-DNA substitution could induce effective
silencing of luc gene fused with PS targets. Thus, we
conclude that gene silencing due to transfection with
functional DNA-modified siRNAs may not be associated
with passenger-strand-dependent off-target effects.

Reduction in seed-sequence-based off-target effect in
gene silencing due to transfection with functional
DNA-modified siRNAs

The 8-bp long DNA of the guide strand in DNA-modified
siRNA corresponds in position to the ‘seed’ region of
microRNA that is implicated in gene regulation
by translational inhibition and/or mRNA degradation
(45–49). In nonmodified siRNA, the region of nucleotide
position 2–8 measured from the 50 end of the guide strand
may play an essential role in the initial stage of mRNA
recognition. The DNA–RNA hybrid is generally less
stable thermodynamically than RNA duplex (27,28,
50,51). Thus, the seed activity or capability of inducing
inhibition of translation and/or mRNA degradation due
to the DNA seed arm in the putative RISC containing the

guide strand of modified siRNA with 8-bp GS-DNA
substitution is expected to be considerably weaker than
that of the nonmodified-siRNA–RISC. In fact, in all cases
examined, calculated Tm in the ‘seed’ region of DNA-
modified siRNA was considerably lower than that of
cognate nonmodified siRNA (Supplementary Table S5).
For further confirmation of this point, three consecutive

copies of an identical sm target sequence, which possesses
homology only to the seed sequence of nonmodified or
DNA-modified siRNAs to be examined, were introduced
into the 30untranslated region of psiCHECK-1 Renilla luc
(Figure 4). As a total, 12 sm-targets for highly functional
siRNAs were examined as inserts (see Figure 4,
Supplementary Figure S8 and Table S3). As described
above (see also Figure 3, Supplementary Figure S6), at
50 nM, all DNA-modified siRNAs along with cognate
nonmodified siRNAs effectively silenced cm-target genes.
A considerable reduction in relative luc activity was
observed in sm-target expressing cells transfected espe-
cially with certain nonmodified siRNAs possessing a
higher G/C content in the seed region (Supplementary
Figure S8). However, virtually no sm target knockdown
was induced by treatment with DNA-modified siRNAs at
least 11 of 12 cases (Figure 4B). The seed activity of
authentic siRNA increased with increasing the copy
number of sm targets but no such effect was observed
in the case of DNA-modified siRNA treatment
(Supplementary Figure S9). It may thus follow that most,
if not all, functional modified siRNAs with 8-bp GS-DNA
substitution may hardly induce seed-sequence-based off-
target effects.

Genome-wide analysis of off-target effects due to
DNA-modified-siRNA-dependent gene silencing

To further clarify that gene silencing due to modified
siRNAs with 8-bp GS-DNA substitution is less frequently
associated with off-target effect, genome-wide expression
profiles were examined using microarray analysis. siVIM-
270 is a functional nonmodified siRNA for human
vimentin knockdown (see Figures 3 and 4), while
chiVIM-270 is cognate modified siRNA with 8-bp GS-
DNA substitution. As a total, 16 783 transcripts were
examined by microarray profiling (Figure 6C and D and
Supplementary Figure S10).
Homology between the seed region of siRNA and the

30UTR but not coding sequence of mRNA has been
shown to be important for seed-dependent off-target effect
(10) and, as described above, the position 1–8 region of the
guide strand, consisting of the 50 very end (position 1) and
the seed sequence (position 2–8), is replaceable with DNA
without appreciable reduction of gene silencing. The 50-
end-proximal, 7-bp region of class-I siRNA is A/U-rich.
Thus, 16 783 transcripts were classified into four groups
based on homology between 30UTR and the guide-strand
seed region (Figure 6A). About 5% transcripts (n=695)
possessed homology to the entire position 1–8 region of
the guide strand of siVIM-270 (group-1). About 7%
transcripts (n=1195) were completely complementary
to the region 1–7 but not position 8 (group-2).
Approximately 6% transcripts (n=1039) had homology
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Figure 6. Microarray-based off-target-effect profiling. HeLa cells were transfected with siVIM-270, a nonmodified siRNA targeting the vimentin
transcript, and cognate modified siRNA with 8-bp GS-DNA substitution, and microarray-based expression profiles were examined 24 h after
transfection. Change in gene expression is shown by log2 of fold change ratio to the mock transfection. As a total, 16 783 transcripts were examined.
(A) Classification of transcripts into four groups based on 30 UTR homology to the position 1–8 region of the guide strand of siRNA. 30 UTRs of
group-1 transcripts (n=695) possess homology to the entire position 1–8 region of the guide strand. 30 UTRs of group-2 transcripts (n=1195) are
completely complementary to the region 1–7 but not position 8. 30 UTRs of Group-3 transcripts (n=1039) have homology to the entire seed region
(region 2–8) but not position 1. Group-4 transcripts (n=13 965) are transcripts other than those belonging to group 1–3. They consist of transcripts
possessing no homology at nucleotide position 1 and 8, and those possessing 1- or more than 1-bp mismatch in the central seed region (position 2–7).
(B) Percentage of transcripts of which activity was reduced to more than 50% are shown. 1–8, 1–7 and 2–8, respectively, group-1, -2 and -3
transcripts with a single site in the 30 UTR. Greater than two, transcripts of which the 30 UTR contains two or more than seed region sites (1–7 or
2–8 or 1–8). Seed activity increased with increasing the number of sites possessing seed homology. Note that, in all cases, DNA-modified siRNAs
appear much less effective in inducing off-target effect than cognate nonmodified siRNAs. (C, D) Microarray profiling of gene expression subsequent
to transfection of siVIM-270 (C) and chiVIM-270 (D). Each point represents the average of 11 observations. Signals of group 1–4 are shown
using four different colors. Red, green and blue dots, respectively, represent group-1, -2 and -3 transcripts. Group-4 transcripts or those with no
homology site are colored in gray. Group 1–4 signals are separately shown in Supplementary Figure S10. Signals for vimentin belonging to group-4
are colored in black and labeled with arrows. Vertical axis, log2 of fold change ratio to the mock transfection or gene activity levels (%). Horizontal
axis, log10 of the multiplied fluorescence intensity of mock transfection. The dotted lines show the level of 50% reduction (log2� –1) induced
by siVIM-270 or chiVIM-270 treatment. (E, F) Cumulative distribution of transcripts downregulated by siVIM-270 (E) and chiVIM-270 (F).
Red, green and blue lines, respectively, represent the cumulative fraction of group 1–3 transcripts, respectively. The line for group-4 transcripts
is colored in gray.
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to region 2–8 but not position 1 (group-3). All other
transcripts (n=13 965), that is, those with no homology
site belong to group-4. Note that a small fraction of
transcripts (0.7%; n=111) with two or more than two
homologous regions are doubly counted. In Figure 6C–F,
changes in abundance of these four group transcripts
monitored with microarrays are shown using four colors.

In the case of siVIM-270 treatment, repression from
UTRs of group-3 transcripts with complete seed match
was significantly more than those from UTRs of group-1,
-2 and -4 (P< 10–3, P< 10–25 and P< 10–154, respectively,
Wilcoxon’s rank-sum test) (Figure 6E). Similarly, in the
case of chiVIM-270 treatment, repression from UTRs of
group-3 was significantly more than that those from
UTRs of group-1, -2 and -4 (P< 10–5, P< 10–3 and
P< 10–54 respectively) (Figure 6F). These results are
consistent with previous finding (31) of the importance
of the seed homology for microRNA-type targeting
specificity.

Results in Figure 6E and F also show that authentic
siRNA-dependent repression from UTRs of transcripts
with complete seed homology was significantly more than
that due to modified siRNA with 8-bp GS-DNA
substitution (in the case of group-1 and -3 transcripts,
respectively, P< 10–5, and P< 10–24).

The expression of about 20% (n=184) of group 3
transcripts was reduced to <71% [fold change (log2)
� –0.5] subsequent to siVIM-270 treatment (Figure 6C
and E), while only 5% (n=54) of group-3 transcripts
were associated with a more than 29% reduction in
expression subsequent to chiVIM-270 treatment
(Figure 6D and F). The 30UTRs of group-1 and -3
transcripts are completely homologous to the seed region
(positions 2–8) (see Figure 6A). Figure 6C and D shows
that the number of group-1/3 transcripts of which the
expression levels reduced to more than 50% (fold change
of log2 � –1.0) was 47 and 5, respectively, by siVIM-270
and chiVIM-270 treatment. These 47 and 3 transcripts are
transcriptional products of 28 and three genes, respec-
tively. As shown in Supplementary Figure S12, 30UTRs of
these gene transcripts did not possess any high homology
to the position 9–19 region of the guide strand. In
addition, as has been reported previously (31), increased
effectiveness of dual sites was evident not only in the
case of siVIM-270 treatment but also in the case of
chiVIM-270 treatment (Figures 6B, 7A–D and
Supplementary Figure S11). The reduction of endogenous
signals of vimentin RNA was 79 and 71% by the
treatment of siVIM-270 and chiVIM-270, respectively
(see the arrows in Figures 6C and D, 7A and B), indicating
that chiVIM-270 was slightly less potent compared with
siVIM-270. Taken together, these findings may support
the notion that gene silencing due to modified siRNA with
8-bp GS-DNA substitution is associated with off-target
effect much less frequently, if any, than the nonmodified-
siRNA-based RNAi.

To confirm reliability of microarray data, we performed
the quantitative RT–PCR analysis for vimentin mRNA
and 14 transcripts (genes) selected from a region enclosed
with a rectangle in Figure 7A and B and enlarged in
Figure 7E and F. As shown in Figure 7G, transcription

levels estimated by quantitative RT–PCR analysis were
essentially identical to those obtained by the microarray
analysis within a limit of error. The correlation coefficient
was estimated at 0.96. Based on these observations, we
conclude that gene silencing by modified siRNA with 8-bp
GS-DNA substitution is associated with off-target
effect much less frequently than that due to nonmodified-
siRNA-based RNAi.

DISCUSSION

The present study clearly demonstrated that the GS-end
proximal region of siRNA, which includes the seed
sequence of the guide strand can be replaced with a
DNA counterpart without substantial loss of gene-
silencing activity, although most part of the remaining
should be RNA. Our results (see Figures 5 and S7) also
indicated that gene silencing due to transfection of
modified siRNA with 8-bp GS-DNA substitution not
only requires the activities of RLC-proteins, TRBP2 and
PACT and a RISC-protein, Ago2, but is also associated
with target mRNA cleavage. Thus, the molecular mecha-
nism of gene silencing due to transfection of modified
siRNA with 8-bp GS-DNA substitution appears very
similar, if not identical, to that of nonmodified-siRNA-
based RNAi (2,4). In RNAi, siRNA unwinding occurs
from the GS end by an unknown unwinding enzyme
(20,52–55). Thus, our finding of effective gene silencing
induced by DNA-modified siRNAs in mammalian cells
may indicate that this enzyme is not specific to dsRNA.
Both dsRNA and dsDNA should serve as substrates for
the enzyme.
Structural analysis (see Figure 5D) indicated that, as in

the case of siRNA-dependent mRNA cleavage, target
mRNA is cleaved by modified siRNA with 8-bp GS-DNA
substitution mainly at position 10–11, as measured from
the 50 end of the guide strand, which apparently functions
as a ruler zero-point in RNAi (43). Although one turn
of dsDNA (10.5 bp) is shorter than that of RNA duplex
(11–12 bp) by 0.5–1.5 bp (56), no difference in cleavage
site could be detected between nonmodified and
DNA-modified siRNA-dependent cleavage reactions
(Figure 5D). This supports the notion that the helix
pitch in the seed region is determined not by polynucleo-
tides but by Ago protein surface properties (7). Results in
Figure 4 and Supplementary Figure S8 show that the seed
activity of the DNA arm is considerably less than that of
the RNA counterpart. Our results indicated that DNA-
modified-siRNA-dependent gene silencing is associated
with not only little seed-dependent off-target effects but
also virtually no passenger-strand-dependent off-target
effects, provided that DNA-modified siRNAs possess an
8-bp long DNA guide strand and cognate siRNAs belong
to class-I. In contrast, class-I siRNAs possessing a higher
Tm of the seed sequence occasionally induced seed-
dependent off-target effect (our unpublished data; see
also Supplementary Figures S8 and S9).
Since it is possible to design class-I siRNAs for almost

all human or mouse genes (20,25), the above finding may
indicate that almost all mammalian genes are effectively
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Figure 7. Microarray analysis of off-target effects due to transfection of transcripts with plural sites for seed-homology within the 30 UTR. (A, B)
Microarray profiles of transcripts extracted from cells treated with siVIM-270 (A) and chi-VIM-270 (B). Vertical axis, log2 of fold change ratio to the
mock transfection. Horizontal axis, fluorescence intensity relative to that of mock transfection. Fluorescence intensity is expressed using log10. Blue
dots represent transcripts of which the 30 UTR contains only one site complementary in sequence to the position 2–8 region of the guide strand. Red
dots represent transcripts of the 30 UTR with two or more than two sites completely matching the 2–8 position of the guide strand (see
Supplementary Figure S11). The positions of vimentin are indicated as arrows. (C, D) Cumulative fraction of genes or transcripts downregulated by
siVIM-270 (C) and chiVIM-270 treatment (D). In the case of siVIM-270 treatment, repression from UTRs of transcripts with two or more than two
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knocked down with a considerably reduced off-target
effect if we use functional modified siRNAs with 8-bp GS-
DNA-substitution in place of authentic nonmodified
siRNAs. Indeed, a genome-wide analysis using microarray
profiling supported the feasibility of this notion experi-
mentally (Figures 6 and 7, and Supplementary Figures S10
and S11).

Our experiments (Figure 5 and Supplementary
Figure S7) indicated that DNA-modified-siRNA-depen-
dent gene silencing also requires TRBP2 and PACT as
well as Ago2. TRBP2 and PACT are capable of binding to
dsRNA but not dsDNA (Figure 5A; 38,40). Ago2 has
been shown to interact with ribonucleotide residues of the
siRNA guide strand (4–9). Thus, it is quite feasible that, as
in the case of nonmodified siRNA, the RNA part of
DNA-modified siRNA provides sites for various RLC-
and/or RISC–RNA-binding proteins. Figure 5C showed
that DNA-modified-siRNA-dependent gene silencing is
much more sensitive to unrelated siRNA treatment than
nonmodified-siRNA-based RNAi, suggesting that a part
of interactions between modified siRNA with 8-bp GS-
DNA substitution and RLC/RISC proteins is weaker than
those between nonmodified siRNA and RLC/RISC
proteins. According to a recent model of RISC (7), the
guide arm interacts with Mid-PIWI-L1 regions of Ago2.
In addition, our data (see Supplementary Figure S4)
suggested that, as with nonmodified siRNA (33), the
50DNA end of the guide strand of the DNA-modified
siRNA is phosphorylated within cells. Thus, the DNA seed
arm may possess a weaker affinity to the Mid-PIWI-L1
lobe of Ago2 than the RNA counterpart. In the mRNA
cleavage reaction, DNA-modified siRNA is as effective
as cognate nonmodified siRNA as far as the oligonucleo-
tide concentration of 50 nM is used. Therefore, RNA in
the 30terminal two-thirds of the guide strand might
compensate weak DNA-dependent seed activity with its
strong affinity to target mRNA in the case of mRNA
cleavage reaction.

As shown previously (20), in highly functional siRNA,
the 7-bp long region from the 50 end of the guide strand is
AU rich and the nucleotide pair at position 1 or the 50 very
end of the guide strand is A/U. The position 1 nt may
not be involved in the initial mRNA recognition (20).
In accordance with the recent reports (31,32), our
microarray analysis indicated that the presence of
complete homology between 30UTR and the seed region
(position 2–8) of the guide strand is important for
recognition of the target sequence by siRNA (see
Figure 6E). This may be coincident with the result
obtained from crystal structure analysis of archaeal
Piwi–RNA complexes (5). Structural analysis indicated

that the phosphorylated 50 end of the guide strand is
anchored in a highly conserved deep basic pocket
positioned on the surface of the Mid domain of Ago
protein, and that the first base pair of the duplex is
unwound, separating the 50 nt of the guide strand from the
complementary target mRNA (5). Recently, Jackson et al.
(57) also have shown that position-specific, sequence-
independent chemical modifications within the seed region
reduced silencing of most off-target transcripts comple-
mentary to the seed region of the siRNA guide strand.
Especially, they showed that the 20-O-methyl ribosyl
modification of nucleotide at the position 2 but not 1
from the 50GS end decreased sharp position-dependent
off-target silencing effect (57). Thus, it is feasible that most
of the 50 terminal nucleotides in the guide strand are
essential for establishing conformation of the RLC– and/
or RISC–RNA complex and/or executing RNAi. The first
7–8-bp region from the 50end of the guide strand might
have dual functions. That is, nucleotides in the region of
position 1–7 might be closely linked to unwinding of
siRNA or possible activation of RISC complex and those
in the region of position 2–8 appeared involved in target
mRNA recognition.
In conclusion, we found that replacement of the seed

arm of class-I siRNAs with cognate DNA sequences led to
almost complete loss of off-target effects without losing
substantial gene-silencing activity in mammalian cells.
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